

Architecture for multi-domain information integration

AgentLink TFG Meeting June 30th, 2004

Silvana Aciar, Gustavo González, Beatriz López, Josefina López-Herrera, Josep Lluís De la Rosa

http://eia.udg.es/arl/

Agents Research Lab Universitat de Girona

N CO-ORDINATION ACTION FOR AGENT-BASED COMPUTING

- **3.** Introduction
- 4. Our Approach: MasUM: SUM + MasID
- 5. MasID Methodology
- 6. MasID Architecture
- 7. Preliminary results
- 8. Conclusions and open issues

1. Introduction

Motivation

- IRES Project: On the Integration Restaurant Services ACNET.02.50
 - Content-based filtering through CBR engine
 - Opinion-based filtering through trust Distributed multi-agent recommender system of service agents and personal agents

Available at: http://arlab.udg.es/

Special Prize to the best system deployed in the AgentCities network

1. Introduction

2. Our approach

Multi-agent based User Models for Multiple Services (MasUM)

3. MasID Methodology

Distributed Heterogeneous Information Integration

Information selection about users and services.

Heterogeneous and distributed information sources in several domains.

Information access can be established by means of relationships between the user and services.

3. MasID Methodology

ſ	Use	User Res		Restaurant		Quality-Proce A		Ambient			Origin		ality	ality			
/	1054663018421		PIZZER-	A ADRIANO	0.50	0.50		0.75			0.95						
ŀ	1054663018421		118421	XINES G		0.75		0.50			0.90					_	
		User		Restaurant		Quality-F	Proce Ambient						Originality				
	10	1032	1032969360861 PIZZER-A ADRIANO		1		0.9	2	2		0.50		50				
		1032969360861		XINES GRAN MURA	LLA 0.75			0.5	50			(0.90			
			User		Restaurant		Quality-Pro	oce		Ambient					Originality		
		1032	10335505554	98	PIZZER-A ADRIANC)	1			0.80					0.90		
	103355055549		.98	XINES GRAN MURA	ALLA 0.75		0.75		0.50					0.90			
	1033550555498		.98	CAN PERET		1	0.7		0.75	'5			0.85				

Restaurant	Quality-Proce	Ambient	Originality
PIZZER-A ADRIANO	1	0.80	0.90
XINES GRAN MURALLA	0.60	0.54	0.85
CAN PERET	1	0.75	0.75

$$Q_{ij} = 1 - \sum_{i=1}^{k} ||P_{ij} - \overline{P_{Oj}}|| \cdot \log_2 ||P_{ij} - \overline{P_{Oj}}||$$

Where

 P_{ij} = weight given to the attribute j of by user i

$$\overline{P_{Oj}} = \frac{i}{b} \overline{P_j} + e$$

$$\overline{P_j} = \frac{\left(\sum_{i=1}^k P_{ij}\right)}{\frac{k}{i}}$$

3. MasID Methodology. Step 2

ſ	Us	User Restaura 1054663018421 PIZZER		Restaura	staurant		Quality-Proce Ambient					Originality				
/	10			A ADRIANO	0.50		0.75		0.95							
ľ	10	546630	18421	XINES G		0.75		0.50			0.90					
		User		Restaurant		Quality-Pro		Am	Ambient				0	Originality		
	10	1032	1032969360861 PIZZER-A ADRIANO			1		0.92			0		50			
-	10329		103 <u>2969360861</u>		XINES GRAN MURA	ALLA 0.75			0.50					0.	90	
			User		Restaurant		Quality-Proc		oce Ambient						Originality	
		103: 1033550555498 PIZ2		PIZZER-A ADRIANO)	1		0.80						0.90		
	1033550555498		98	XINES GRAN MURA	LLA	LA 0.75		0.50				0.90		0.90		
	1033550555498		98	CAN PERET	1		0.75						0.85			

User	Quality-Proce	Ambient	 Originality
1033550555498	1	0.80	0.90
1054663018421	0.75	0.50	0.90
1054663018421	1	0.75	0.85

3. MasID Methodology. Step 2

$$Q_{ij} = 1 - \sum_{i=1}^{k} \|P_{ij} - \overline{P_j}\| \cdot \log_2 \|P_{ij} - \overline{P_j}\|$$

Where

 P_{ii} = weight given to the attribute j of by user i

3. MasID Methodology. Step 3

Cluster of users ∠ stereotypes

	User	Quality-Proce	Ambient	 Originality	
Г	1033550555498	1	0.80	0.90	
	1054663018421	0.75	0.50	0.90	
	1054663018421	1	0.75	0.85	Π

Open issue Depends on: The user is in both domains Stereotypes Similarity measures Correlation measures

4. MasID Architecture

The INTegrator Agent (INTA):

Access to the data set in each domain.

Computes step 1 and 2.

Keeping update the relation in each domain.

QUantifier Agent(QUA):

Apply the cluster algorithm (step 3)

RECommender Agent (RECA):

Computes similarities (step 4)

4. Preliminary results

RESTAURANTE XINES GRAN MURALLA

In the restaurant domain the product was characterized by the optimal weight allocated to each attribute (step 1)

ATRIBUTO	4				EPSILON			
		0,02000	0,01000	0,00000	-0,01000	-0,02000	-0,03000	-0,05000
User	Opinion							
1054584503156	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1054583443343	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1054585485843	1,00	0,51260	0,50757	0,50282	0,49836	0,49419	0,49031	0,48348
1054661014906	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1054663018421	1,00	0,51260	0,50757	0,50282	0,49836	0,49419	0,49031	0,48348
1033550555498	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1033576741311	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1033640425406	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1033641486370	1,00	0,51260	0,50757	0,50282	0,49836	0,49419	0,49031	0,48348
1033642092247	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1034077308426	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1034156833477	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1034766506330	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1034781599222	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1034935043442	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1035369276633	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1035467777346	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1053002146812	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1053004475218	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1053006866531	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1053013964109	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1035974453346	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1053520426234	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1053532107406	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1053620809484	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1070819918901	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1071014819870	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1053973943031	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1053974575281	0,25	0,51669	0,50984	0,50360	0,49795	0,49287	0,48834	0,48084
1054064431718	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1054065218359	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1054066507781	0,50	0,86215	0,90342	0,95424	0,96978	0,91496	0,87185	0,80249
1054067867828	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
1037116597255	0,75	0,48729	0,49169	0,49663	0,50213	0,50822	0,51492	0,53026
Sum(Epsilon)		21,40671	21,86916	22,45798	22,63529	21,98018	21,47736	20,71047
Media	0,55147							
Optimal Weight	=Media+ensilo	n			0,56147			
optimal Holgin	-modia opolio				1			
					1			
					1		~	
	22.00				1		16	
	23,00 -	0			*		2	
	22,50 -	<u>.</u>	~	-	~		1	
	22.00		/			~		
	,00	- 	/					
	21,50 -	/				-		
	21,00 -	<u>)</u>					1	
	20.60							
	20,00 4	0.00000	0.04000	0.00000	0.04000	00000 0.0	0000	
		0,02000	0,01000	0,00000 -	-0,01000 -0	,02000 -0,0	3000	
				Epsilo	on			
							3	
	Figure	1.1 Resu	Its Resta	urant Do	omain			

5. Preliminary results

In the insurance domain the product was characterized by the weight allocated to each attribute by an expert (step 2). (no step 1 is performed)

idcustomer	property-id-property	property-name	QNORM
2	8	Edad consumidor	0,686679378
2	17	Motivo adquisicion	0,778538127
2	18	Motivo contratacion	0,686679378
2	27	Sinergia	0,623523398
3	8	Edad consumidor	0,686679378
3	17	Motivo adquisicion	0,778538127
3	18	Motivo contratacion	0,686679378
3	27	Sinergia	0,623523398
4	8	Edad consumidor	0,686679378
4	17	Motivo adquisicion	0,778538127
4	18	Motivo contratacion	0,686679378
4	27	Sinergia	0,623523398
5	8	Edad consumidor	0,686679378
5	17	Motivo adquisicion	0,778538127
5	18	Motivo contratacion	0,686679378
5	27	Sinergia	0,623523398
6	8	Edad consumidor	0,686679378
6	17	Motivo adquisicion	0,778538127
6	18	Motivo contratacion	0,686679378
6	27	Sinergia	0,623523398
7	8	Edad consumidor	0,686679378
7	17	Motivo adquisicion	0,778538127
7	18	Motivo contratacion	0,686679378
7	27	Sinergia	0,623523398
8	8	Edad consumidor	0,686679378
8	17	Motivo adquisicion	0,778538127
8	18	Motivo contratacion	0,686679378

Table 1.1 Results Insurances Domain

6. Conclusions and future work

Multi-domain integration information

- Methodology
- Architecture
- Preliminary results on off-line transactions and recommender system

Complete methodology

- Open issues regarding similarities across domain

Future work

- Test the integration architecture to gather user information from web services.
- Test the integration architecture to fill up the features of the Smart User Model in ebusiness applications
- Extend this approach to Grid environment in order to create and manage complex knowledge discovery applications composed as workflows that integrate data sets, provided as distributed services on a Grid.

THANK YOU FOR YOUR ATTENTION!

Silvana Aciar, Gustavo González, Beatriz López, Josefina López-Herrera, Josep Lluís De la Rosa

http://eia.udg.es/arl/

