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Abstract. We propose a plot-based recommendation system, which is based
upon an evaluation of similarity between the plot of a video that was watched
by a user and a large amount of plots stored in a movie database. Our system is
independent from the number of user ratings, thus it is able to propose famous and
beloved movies as well as old or unheard movies/programs that are still strongly
related to the content of the video the user has watched. The system implements
and compares the two Topic Models, Latent Semantic Allocation (LSA) and La-
tent Dirichlet Allocation (LDA), on a movie database of two hundred thousand
plots that has been constructed by integrating different movie databases in a local
NoSQL (MongoDB) DBMS. The topic models behaviour has been examined on
the basis of standard metrics and user evaluations, performance assessments with
30 users to compare our tool with a commercial system have been conducted.
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1 Introduction

A recommendation system helps users to make choices without sufficient personal ex-
perience of all the possible alternatives [22]. These system are the basis of the targeted
advertisements that account for most commercial sites revenues. They are commonly
used on several fields, for suggesting entertainment items like books, music, videos
and also for finding people on dating sites. Recommendation systems have become
relatively successful at suggesting content, however their performance greatly suffers
when little information about the user’s preferences is given. These situations are not
rare; they usually occur when the users are new to a system, the first time a system is
launched on the market (no previous users have been logged), for new items (where we
do not have any history on preferences yet) and when, because of user desire for privacy,
the system does not record their preferences [20]. In such cases, making suggestions en-
tirely based on the content that is being recommended can be a good solution.

In recent years, some events catalized the attention on movie recommendation sys-
tems: on 2009 and 2013 Netflix announced two developer contests for improving their
predictions promising conspicuous prizes; on 2010 and 2011 two editions of the Inter-
national Challenges on Context-Aware Movie Recommendation1 took place.

1 http://2011.camrachallenge.com/
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The focus of our paper is to provide an automatic movie recommendation system
that does not need any a priori information about users, i.e. a completely non-intrusive
system. The paper compares two specific techniques (LDA and LSA) that have been
implemented in our content-based recommendation system. Although topic models are
not new in the area of recommendation systems, their use has not been deeper analyzed
in a specific domain, such as the movie domain. Our intention is to show how these
well-known techniques can be applied in this domain and how they perform.

The context where our system works is that of video-on-demand (VOD). Generally
speaking, this is the case when a user is looking for an item without being registered on
the site in which he is looking for (searching a book on Amazoon, a movie on IMDb
etc.). We assumed that the only information we have about the user is his first choice,
i.e. the movie he has selected/ he is watching. We do not have an history about his past
selections nor a profile about his general interests. When watching a VOD movie, users
explicitly request to buy and to pay for that movie, then what our system attempt to do
is proposing a list of similar movies assuming that the chosen film has been appreciated
by the user (the system assumes the user liked the movie if his play time is more then
3/4 of the movie play time). Here, we also assume that we have no knowledge about the
preferences of a user; namely, about who is watching the film, and also profile about
other users who have previously accessed the system.

There are dozens of movie recommendation engines on the web. Some require little
or no input before they give you movie titles, while others want to find out exactly what
your interests are. However all of these systems rely on ratings directly or indirectly
expressed by the users of the system (some examples are Netflix, Rotten Tomatoes,
Movielens, IMDb, Jinni).

Our movie recommendation system permits, given a movie, to supply the user with
a list of those movies that are most similar to the target one. The way the system detects
the list of similar movies is based upon an evaluation of similarity among the plot of
the target movie and a large amount of plots stored in a movie database. This paper is
an extended version of our previous work [3] and its main additions are the extended
description of LSA and LDA models and an in-depth comparison of the use of LSA in
contrast with LDA.

The paper is structured as follows. Section 2 describes the structure of the local
movie database. Section 3 describes hoe the system performs the similarity computa-
tions among movie plots by using the LDA and LSA Topic Models. The experimental
results of this study are presented in Section 4: we show the computational costs of
building the LSA and LDA matrices, and the results of off-line tests performed on three
recommendation systems (LSA, LDA and a commercial approach). Section 5 presents
some related work. Conclusion and future work are depicted in Section 6.

2 The Movie Database

The principal aim of a local repository of movies is to supply an extensive and reli-
able representation of multimedia that can be queried in a reasonable time. The local
database of our system has been defined, as in [7], by importing data from external
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Fig. 1: The local MongoDB database

repositories. In particular, we selected the Internet Movie Database (IMDb)2, DBpedia3

and the Open Movie Database (TMDb)4. Since local database needs to easily import
data from different sources and perform queries on a huge amount of data (thousands
of movies) in a short time, we chose MongoDB5, a non relational and schema-free
database. MongoDB features allow to create databases with flexible and simple struc-
ture without decreasing the time performance when they are queried.

Information about movies can be classified in either information that are related to
multimedia or information that are about people that participated in the production of
multimedia. This led to the creation of three main databases, each storing collections
from the 4 sources (as shown in Figure 1). As MongoDB do not enforce document
structure, this flexibility allows an easy adaptation to integrate different/new datasets
into the system. A single collection can store documents with different fields. Thus
there cannot really be a description of a collection, like the description of a table in
the relational databases. An example of how these documents are organized within the
database is shown in [3].

3 Plot Similarity Computation

The similarity of two media items depends on their features likeness. Hence, for each
feature, a specific metric is defined in order to compute a similarity score. Most of the
metrics that are adopted are calculated through only few simple operations. However, if
we want to consider also movie plots, the similarity computation becomes more com-
plex. Our approach is based on the Vector Space Model (VSM) [23], this model creates
a space in which both documents and queries are represented by vectors. The VSM
behaviour has also been studied applied on recommendation systems [16].

Our system takes advantage of this model to represent the different movie plots:
each plot (or document from now on) is represented as a vector of keywords with asso-
ciated weights. These weights depend on the distribution of the keywords in the given
training set of plots that are stored in the database. Vectors representing plots are then

2 http://www.imdb.com/
3 http://dbpedia.org/
4 http://www.themoviedb.org/
5 http://www.mongodb.org/
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joined in a matrix representation where each row corresponds to a plot and each col-
umn corresponds to a keyword extracted from the training set plots (i.e. the document
by keyword matrix). Thus, each cell of the matrix represents the weight of a specific
keyword according to a specific plot.

The matrix computation goes through four main steps:

1. Plot Vectorization - relevant keywords are extracted and then stop words removal
and lemmatization techniques are applied;

2. Weights Computation- weights are defined as the occurrences of keywords in the
plots; the initial weights are then modified by using the tf-idf technique [23](but
other suitable weighting techniques could be used as well), thus building the docu-
ment by keyword matrix;

3. Matrix Reduction by using Topic Models - the document by keyword matrix is re-
duced to a lower dimensional space by using the Topic Models LDA and LSA, thus
it is transformed into a document by topic matrix.

4. Movie Similarity Computation- starting from the document by topic matrix, the
similarity between two plots is computed by considering their topics as features
instead of words.

3.1 Plot Vectorization

If two plots are to be compared, they will need to be converted into vectors of key-
words. As preliminary operations, keyword extraction and filtering activity are per-
formed. Keywords correspond to terms within the document that are representative of
the document itself and that, at the same time, are discriminating. Less discrimina-
tive words, the so called stop words, are discarded, while the other terms are prepro-
cessed and substituted in the vector by their lemmas (lemmatization). Lemmatization
and keyword extraction are performed by using TreeTagger6, developed at the Institute
for Computational Linguistics of the University of Stuttgart. This tool can annotate doc-
uments with part-of-speech and lemma information in both English and German lan-
guage. Keywords extracted from plots as well as their local frequencies (occurrences in
the description of the plot) are stored as features of the media item in the local database
MongoDB. This choice has been made for two main reasons. First, the keyword ex-
traction process is relatively slow7 compared to the access to database values. Since
the weighting techniques are based on the global distribution of the keywords over the
whole corpus of plots, it is necessary to generate all the vectors before applying the
weighting technique. Second, while weights change when new multimedia plots are
added into the system, the local keyword occurrences do not.

3.2 Weights Computation

Weighting techniques are used for computing keyword weights. A weight is a value
in the range [0,1] that represents the relevance of a specific keyword according to a

6 http://www.cis.uni-muenchen.de/ ∼schmid/tools/TreeTagger/
7 One database access, using MongoDB, takes about 0.3 milliseconds while the extraction of

keywords from a plot takes more than one second.
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specific document. A weight is calculated on the basis of the local distribution of the
keyword within the document as well as on the global distribution of the keyword in the
whole corpus of plots. Keywords with a document frequency equal to 1 are discarded.
Since, our previous work [7] has compared tf-idf and log weighting techniques reveal-
ing that the results are very similar, in this paper we employ only the tf-idf technique
for computing the weights.

3.3 Matrix Reduction by using Topic Model

The Vector Space Model treats keywords as independent entities. To find documents
on specific concepts, we must provide the correct key terms. This representation leads
to several issues: (1) there can be an high number of keywords when we have to deal
with a huge amount of documents; (2) if any keyword changed, the document would
not convey the same concept.

These problems can be faced by a representation into a Topic Model[18]. The Topic
Model explores the idea that the concept held by a set of terms can be represented
as a weighted distribution over a set of topics. Each topic is a linear combination of
terms, where to each term a weight reflecting the relevance of the term for that topic is
associated. For example, high weights for family and house would suggest that a topic
refers to a social unit living together, whereas high weights for users and communication
would suggest that a topic refers to social networking.

Topics can be found by clustering the set of keywords. The use of topics drastically
reduces the dimension of the keyword Matrix obtained by Vector Space Model. More-
over, if a keyword changes, the document conveys the same idea as long as the new
keyword is taken from the same topic pool.

Topic vectors may be useful in the context of movie recommendation systems for
three main reasons: (1) the number of topics that is equal to the number of non-zero
eigenvectors is usually significantly lower than the number of keywords, the topic rep-
resentation of the plots is more compact8; (2) the topic representation of the keywords
makes possible to add movies that have been released after the definition of the matrix
without recomputing it; (3) to find similar movies starting from a given one, we just
need to compute the topic vectors for the plot of the movie and then compare these
vectors with the ones we have stored in the matrix finding the top relevant.

In the following, we describe the LSA and LDA models and how they can be applied
to our movie recommendation system.

Latent Semantic Analysis (LSA) LSA is a model for extracting and representing
the contextual-usage meaning of words by statistical computations applied to a large
corpus of documents. The LSA consists of a Singular Value Decomposition (SVD) of
the matrix T (Training set matrix) followed by a Rank lowering [5]. The SVD consists
of representing the matrix T as the product of three matrices (see also the top of Figure
2):

T = KSDT

8 Thus, we store the matrix of document-topic vectors to represent the training set.
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Fig. 2: Matrix decomposition for LSA and LDA.

Where K and D are orthogonal matrices and S is a diagonal matrix. The original
matrix T is the document by keyword matrix as it represents the relationships between
keywords and plots. Matrix K, the topic by keyword matrix, represents the relationships
between keywords and topics. Matrix S is a diagonal matrix. Its values represent the
square roots of the so called eigenvalues of the matrix T T T . Matrix DT , document by
topic matrix, represents the relationships between plots and topics.

The SVD of the matrix is consequently followed by a Rank lowering by which
the transformation of the matrix S into a matrix S’ is performed which set the lowest
values of S to zero. The purpose of dimensionality reduction is to reduce noise in the
latent space, resulting in a richer word relationship structure that reveals latent seman-
tics present in the collection. The T , S and D matrices are truncated to z dimensions
(i.e. topics). The transformed document by keyword matrix T ′ is then obtained by the
following product:

T ′ = KS′DT

Each row and column of the matrix T ′ can be represented as a vector combination
of the eigenvectors of the matrix T ′T ′T

v = ∑
i

ci · vectori

Where the coefficients ci of the above formula represent how strong the relationship be-
tween a keyword (or a description) and a topic eigenvectori is. The eigenvectors define
the so-called topic space, thus, the coefficients related to a vector v represent a topic
vector.

Queries are represented in the reduced space by T T
z q, where T T

z is the transpose
of the term by topics matrix, after truncation to z topics. Queries are compared to the
reduced document vectors, scaled by the singular values (SzDz) by computing the co-
sine similarity. The optimal z is determined empirically for each collection. In general,
smaller z values are preferred when using LSA, due to the computational cost associated



Comparing LDA and LSA 7

with the SVD algorithm, as well as the cost of storing and comparing large dimension
vectors9.

Latent Dirichlet Allocation (LDA) LSA provides a simple and efficient procedure
for extracting a topic representation of the associations between terms from a term-
document co-occurrence matrix. However, as shown in [9], this representation makes it
difficult for LSA do deal with the polysemous terms. The key issue is that its represen-
tation does not explicitly identify the different senses of a term. To address this problem
we investigated the use of the LDA Topic Model.LDA is a generative model for docu-
ment collections that has been already successfully applied in several areas: document
modeling and classification, Word Sense Disambiguation, Information Retrieval etc. [4,
9, 26].

Unlike LSA, LDA is a probabilistic Topic Model, where the goal is to decompose a
conditional term by the document probability distribution p(t|d) into two different dis-
tributions, the term by topic distribution p(t|z), and the topic by document distribution
p(z|d) as follow (see also the bottom of Figure 2):

p(k|d) = ∑
z

p(k|z)p(z|d)

this allows each semantic topic z to be represented as a multinominal distribution of
terms p(k|z), and each document d to be represented as a multinominal distribution of
semantic topics p(z|d). The model introduces a conditional independence assumption
that document d and keyword k are independent conditioned on the hidden variable,
topic z.

In [9] it has been shown that LDA outperforms LSA, in the representation of am-
biguous words and in a variety of other linguistic processing and memory tasks.

LDA can be interpreted as matrix factorization where document over keyword prob-
ability distribution p(k|d) can be split into two different distributions: the topic over
keyword distribution p(k|z), and the document over topic distribution p(z|d). Thus, it
appears clear, that we can easily make a direct correspondence between the document
by topic matrix DT obtained from LSA and the the document over topic distribution
p(z|d) obtained by using LDA.

Both LDA and LSA permit to find a low dimensional representation for a set of
documents w.r.t. the simple term by document matrix. This dimensionality in both cases
has to be decided a priori. By adopting LSA, we were able to represent each plot of
the IMDb database with 500 topics, instead of 220000 keywords10. For LDA (which
has been demonstrated working well for a number of topics over 50 [4]), after a few
experimental evaluations, we decided to use 50 topics.

3.4 Movie Similarity Computation

As previously described by using LSA or LDA the document by keyword matrix is
decomposed into several matrices. The document by topic matrix (DT or P(z|d)) is the

9 In [7] work we determined 500 as a good number of topic. This value allows to have reasonable
computational costs, and to maintain an appropriate level of accuracy.

10 Several experiments where conducted on a subset of the test set.
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one that is used to represent the movie of our database in a lower dimensional space,
i.e. the matrix that is used to compute the similarity score between two plots.

The cosine similarity is used as a distance metric to calculate the similarity score
between two documents. It is used to either compare plots within the training set or
plots that are not included in the training set.

Definition - cosine similarity Given two vectors vi, and v j, that represent two dif-
ferent plots, the cosine angle between them can be calculated as follows:

cosin(vi,v j) =
∑k (vi[k] · v j[k])√

∑k vi[k]2 ·
√

∑k v j[k]2

The value of the cosine angle is a real number in the range [−1,1]. If the cosine
is equal to 1 the two vectors are equivalent, whereas if it is −1 the two vectors are
opposite.

The similarity of plots can also be combined with the similarity of other features
such as directors, genre, producers, release year, cast etc. as proposed in [7].

4 Experiments

We performed several tests in order to evaluate our system, the goal was to compare
the effectiveness of LDA and LSA techniques and to evaluate the performance of the
system on real users.

In [7] we have demonstrated that:

– There is not a big difference in the results obtained by applying log or tf-idf weight-
ing techniques. Thus, we can use one of them.

– The use of the LSA model shows a noticeable quality improvement compared to
the use of the SVD model. LSA allows to select plots that are better related to the
target’s plot themes.

Starting from these results, we conducted new tests and evaluations of the system.
First of all, we loaded data from IMDb into the local database MongoDB and evaluated
the computational costs of building the LSA and LDA matrices. Then, we compared
the two Topic Models manually, by analyzing their behaviours in some special cases.
Finally, we conducted off-line tests. We built two surveys asking real users to judge
the similarity of each film in a list with regard to a target movie. The first test com-
pared the performance of LDA and LSA. The second test compared the performance of
LSA and a commercial system, IMDb. A third test evaluates the precision of the three
recommendation systems.

4.1 Evaluation of the Computational Costs

The SVM of the plot-keyword matrix have a complexity of O(d × k) where d is the
number of multimedia (rows of the matrix) and k is the number of keywords and d ≥ k.
There are about 1,861,736 multimedia in the IMDb database, but only for 200,000
there is a plot available. These plots contain almost 220,000 different keywords. Thus,
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the time cost for the decomposition of the matrix is O = 3 · 1015. Furthermore, the
decomposition requires random access to the matrix, which implies an intensive usage
of the central memory.

Both LSA and LDA decrease this cost by using a reduced matrix. The Document
by Topic Matrix used by LSA has a dimension of d × z where z is the number of topic
(columns). The Document Distribution over Topic Matrix used by LDA has a dimension
of d × z. Usually LSA requires more topics then LDA. Thus, the cost for the compu-
tation of the LDA matrix is further decreased. In order to avoid the central memory
saturation, we employ the framework Gensim11. It offers functions to process plain
document including algorithms performing both LSA and LDA which are independent
from the training corpus size.

Table 1 shows the computational costs to create the LSA and LDA models12.

Table 1: Computational Costs
Operation Time CPU Memory

(minutes) avg use avg use
Plot vect. 5 75% 11%
Tf-idf weights 1 97% 10%
LSA weights 120 97% 42%
LDA weights 60 95% 40%

Table 2: LSA and LDA Topic Model comparison
Configuration LSA LDA
min. document freq. 10 10
min. vector length 20 20
min. tf-idf weight 0.09 0.09
min. lsa/lda weight 0.001 0.001
n. of topics 500 50
matrix size 204285 x 500 204285 x 50
Similarity time cost 12 sec 6 sec

Table 2 summarizes the configuration adopted for LSA and LDA and the time per-
formance of the topic models when, starting from a given plot, they rank all the other
plots in the database. Since the LDA model requires less topics (50 instead of the 500
required by LSA), it has a computation cost and a similarity time cost lower than the
ones for LSA.

4.2 Manual Comparison of Topic Models

We performed several manual evaluations in order to understand the behaviour of both
the Topic Models. In Table 3 we report the top 5 recommendations calculated by using
11 http://radimrehurek.com/gensim/
12 The cost refers to a virtual machine set up with VMWare Workstation 9.0.1, installed on a

server that has the following features: OS: Ubuntu 12.04 LTS 64-bit; RAM: 8 GB; 20 GB
dedicated to the virtual hard disk; 4 cores. The DataBase Management System used is Mon-
goDB 2.4.1, and it was installed on a machine with the following characteristics: OS: Windows
Server 2008 R2 64-bit; CPU: Intel (R) Xeon E5620 Ghz 2:40; RAM: 12 GB.
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LDA and LSA models on two kind of movies: a movie of a saga and a movie that is not
part of a sequel. For “The Matrix” (see the right part of the table), LSA selected movies
referring to the topics of computer, network, programmer, hacker, while the outcome
of the LDA technique showed two movies of the trilogy and other movies containing
terms and names that appear also in the target plot, but that do not refer to similar
topics. The quality of the outcome decreases with movies that do not have a sequel,
like “Braveheart” (see the left part of the table). For this kind of movies, it is difficult
to evaluate the recommended movie list. For this reason, we built a survey of popular
movies that do not have a sequel and asked to real users to judge the similarity of the
recommended movies (as presented in Section 4.3).

Table 3: A comparison between LSA and LDA techniques.
“Braveheart (1995)” “The Matrix (1999)”

LSA LDA LSA LDA
1 Braveheart (1995) Braveheart (1995) The Matrix (1999) The Matrix (1999)
2 The Enemy Within

(2010)
Windwalker (1981) Computer Warriors

(1990)
The Matrix
Reloaded (2003)

3 Journey of a Story
(2011)

Lipgloss Explo-
sion(2001)

Electric Dreams
(1984)

Simulacrum (2009)

4 Audition (2007) Race for Glory
(1989)

Willkommen in
Babylon (1995)

Virus X (2010)

5 The Process (2011) Voyager from the
Unknown (1982)

TRON 2.0 (2003) Fallen Moon
(2011)

6 Comedy Central
Roast of William
Shatner (2006)

Elmo Saves Christ-
mas (1996)

Hackers (1995) The Matrix Revolu-
tions (2003)

4.3 Testing the Recommendation System with Real Users

In order to evaluate the performance of our recommendation system, we identified two
crucial steps: first it is necessary to understand which of the two Topic Models is more
appropriate in the movie domain, then, we need to estimate its behaviour next to a
commercial recommendation system, as IMDb. We defined three off-line tests: the first
collecting the recommendations of LDA and LSA for 18 popular movies (excluding
sagas), the second comparing the recommendations of the best Topic Model with re-
spect to the recommended movie list of IMDb, the third analyzing in more detail the
preferences expressed by 5 users on the three recommendation systems. We asked users
to fill out the survey by selecting the films that looked similar to the film in question.
These evaluations have enabled us to draw some conclusions on the performance of the
implemented Topic Models and on our system in general.

LDA versus LSA The first off-line experiment involved 18 movies; for each of these
movies, we selected the top 6 movies in the recommendation lists of both LSA and
LDA. In order to propose results that can be easily judged by users, we discarded from
the recommended movie lists: tv series, documentaries, short films, entries whose re-
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Fig. 3: Performance of the topic models and IMDb on the two surveys

leased year is before 1960, entries whose title is reported only in the original language,
entries whose plot contains less than 200 characters.

We presented this list to users in a random order and asked them to judge for each
movie in the list if it is similar to the target one, users can reply by choosing among
“similar”, “not similar” and “I do not know”. Figure 4 reports the percentage of users’
judgements received (here we do not consider the movies for which users have not ex-
pressed a judgement). We collected 594 evaluations from 20 users in total. We also
evaluated the behavior of the Topic Models on each film: on the 18 movies, we found
that in 15 cases LSA selected the best recommendations and in 3 cases LDA selected the
best recommendations (see left part of Figure 3). As expected from the previous com-
parison of the two models (reported in Table 3), LSA supplied better recommendations
than LDA.

Fig. 4: Percentage of users’ judgements on LSA-LDA survey

LSA versus IMDb In order to compare our system with respect to IMDb, we built an-
other survey collecting recommendations for 18 popular movies (different with respect
to the ones used in the LDA comparison): we selected them from the top 250 movies of
IMDb13). Also in this case, we extracted only the top 6 movies in the recommendation
lists of both LSA and IMDb.

13 http://www.imdb.com/chart/top
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In the previous survey, we obtained many void answers (i.e. on several recom-
mended movies users do not expressed any opinion), moreover, some users highlighted
that filling out the entire survey was very time consuming. Therefore, we decided to
limit the options only to “similar”.

We presented this list to users in a random order and asked users to judge for each
movie in the list if it is similar to the target one. The experiment has been conducted on
30 test participants.

We collected 146 evaluations from 30 users in total. On the 18 movies, we found
that in 4 cases LSA selected the best recommendations, in 10 cases IMDb selected the
best recommendations and in 4 cases both systems showed the same performances (see
right part of Figure 3).

User Preference Evaluation We added an in-deep evaluation of the users preferences
for the 18 popular movies used in 4.3. This evaluation has been based on the precision
measure computes by using the classification of recommendation results introduced
in [10] as

Precision =
#t p

#t p+# f p
On the 18 movies, we examine punctual preferences expressed by 5 expert users on

the top 6 items of the recommendation list, for this evaluation we consider the “similar”
and “not similar” judgement expressed by the users. Thus for each recommendation list
we calculate the precision of the system based on the user judgement.

We computed the average precision among users (AVG P@6) and the standard de-
viation among the movies (DEV M P@6) and the users (DEV U P@6) (see table 4).
AVG P@6 reflects the average ratio of the number of relevant movies over the top-6
recommended movies for all users.

We found that the precision of LDA is quite low (about half as much as the LSA
precision), while both LSA and IMDb reach a good precision. From this preliminary
evaluation (that is quite limited since it is performed only on 5 users), it seems that the
average precision on the entire set of movies of LSA is quite the same as the precision
of IMDb. As it can be noticed, there is however a strong deviation of the precision value
among different movies.

Table 4: Precision of the systems based on a punctual user preference evaluation.
AVG P@6 DEV M P@6 DEV U P@6

LDA 0.215 0.163 0.133
LSA 0.468 0.258 0.056

IMDb 0.416 0.281 0.064

4.4 Results and Discussion

Based on the results of the above-mentioned experiments, we can draw some conclu-
sions:

– LDA does not have good performance on movie recommendations as demonstrated
by the user evaluation;
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– LSA achieves good performance on movie recommendations;
– both LDA and LSA suggest erroneous entries for movies that have a short plot;
– our system did not outperform the IMDb performance; however, an in-deep evalu-

ation of users preferences has shown that the average precision gained by LSA is
very close to the precision of IMDb.

5 Related Work

Recommendation algorithms are usually classified in content-based and collaborative
filtering [6]. Collaborative filtering systems are widely industrially utilized, for example
by Amazon, MovieLens and Netflix, and recommendation is computed by analysing
user profiles and user ratings of the items. When user preferences are not available, as
in the start-up phase, or not accessible, due to privacy issues, it might be necessary to
develop a content-based recommendation algorithm, or combined different approaches
as in hybrid systems.

Among recommendation systems [1], content-based recommendation systems rely
on item descriptions that usually consist of punctual data. Jinni14 is a movie recom-
mendation system that analyses as well movie plots, but, differently from our approach,
relies on user ratings, manual annotations and machine learning techniques.

LSA was shown to perform better than the simpler word and n-gram feature vectors
in an interesting study [14] where several types of vector similarity metrics (e.g., bi-
nary vs. count vectors, Jaccard vs. cosine vs. overlap distance measure, etc.) have been
evaluated and compared. Due to the high computational cost of LSA there have been
many work around in the area of approximate matrix factorization; these algorithms
maintain the spirit of SVD but are much easier to compute [12]. For example, in [8]
an effective distributed factorization algorithm based on stochastic gradient descent is
shown. We opted for a scalable implementation of the process that does not require
the term-document matrix to be stored in memory and is therefore independent of the
corpus size [21].

Also the LDA Topic Model has been already applied in recommendation systems
to analyze textual information. In particular in [11] a Web recommendation system to
help users in locating information on the Web is proposed. In this system LDA is used as
technique for discovering hidden semantic relationships among Web items by analyzing
their content information. Another interesting application is described in [13] where the
authors propose a tag recommendation system where LDA is exploited to suggest tags
for new resources.

In the specific domain of movie recommendation systems, we found only few frame-
works that make use of plots. In particular in [24] a Context-Aware Recommendation
algorithm is introduced, the framework combines the similarity based on plot keywords
with a mood-specific movie similarity for providing recommendations. Also in [15] au-
thors attempts to solve the cold start problem (where there is no past rating for an item)
for collaborative filtering recommendation systems. The paper describes a framework,
based on an extended version of LDA, able to take into account item-related emotions,
extracted from the movie plots, and semantic data, inferred from movie features.

14 http://www.jinni.com/
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6 Conclusions and Future Work

The paper presented a plot-based recommendation system. The system classifies two
videos as being similar if their plots are alike. Two Topic Models, LDA and LSA, have
been implemented and integrated within the recommendation system. The techniques
have been compared and tested over a large collection of movies. The local movie
database MongoDB has been created to store a large amount of metadata related to
multimedia content coming from different sources with heterogeneous schemata.

Experimental evaluation of both LDA and LSA has been conducted to provide an-
swers in term of efficiency and effectiveness. LSA turns out to be superior to LDA.
The performance of both the techniques have been compared to user evaluation, and
commercial approaches. LSA has been revealed to be better then LDA in supporting
the suggestion of similar plots, but it does not outperform the commercial approach
(IMDb). However, we can not ignore that IMDb is strongly affected by user experi-
ences: it uses features such as user votes, genre, title, keywords, and, most importantly,
user recommendations themselves to generate an automatic response. On the contrary,
our content-based recommendations system is user independent and can be also used to
make recommendations when knowledge of user preferences is not available.

The results shown in this paper highlight some limitations and stimulate some future
directions for our research: (1) Combination with other techniques, (2) Making Use of
Lexical Resources and (3) Exploring new application scenarios.

(1) The plot-based recommendation techniques assume that the main feature a user
likes in a movie is the plot, i.e. the content of the movie, if this is not the case, the
system will fail in suggesting similar movies. An improvement might be to couple our
recommendation system with other techniques that do not totally rely on the plot.

(2) While LDA deals with the polysemy issue, LSA does not. This problem can
be faced by making use of a lexical database as WordNet15. Each keyword might be
replaced by its meaning (synset), before the application of the weight techniques. To
understand which of the synsets better express the meaning of a keyword in a plot we
might adopt Word Sense Disambiguation techniques [17]. The semantic relationships
between synsets can be used for enhancing the keyword meaning by adding all its hy-
pernyms and hyponyms [19, 25, 2].

(3) Our system does not rely on human effort and can be ported to any domain
where natural language descriptions exist (like news, book plots, book reviews etc.).
For example, the system might be able to find movies that contain a story similar to the
one told in a book, e.g. a movie or a television series that used it as a script, or dramatic
movies based on true events similar to a news. The database could be expanded with
other contents to suggest further items similar to the selected movie (e.g. if I liked a
movie about the war in Cambodia I should be interested in newspaper articles, essays,
or books about that topic).

15 http://wordnet.princeton.edu/
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